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The key thing I had to realize for the proof of the completeness theorem for
propositional logic to “make sense” to me was that interpretations of a language of
propositional logic can be thought of as theories.

Normally, an interpretation of a language L of propositional logic is thought of as
a function v from the set of the sentence variables in L to {0, 1}, which is extended
to the set of the formulas in L by letting v(L) = 0 and recursively letting
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for every pair of sentences ¢ and % in L (assuming | and — are the primitive
connectives). The value under v of a sentence ¢ is thought of as the truth value of
¢ under v, with 0 standing for falsity and 1 standing for truth.

A theory in L, on the other hand, is thought of as a set of sentences in L, these
sentences being the nonlogical axioms of the theory. It’s a completely different type
of object from an interpretation.

But if you think about what these formal concepts are trying to get at, they’re
quite similar. Both of them are essentially requirements that certain sentences be
true. A theory requires its nonlogical axioms to be true. An interpretation requires
the sentences true under it to be true, and the sentences false under it to be false,
which might appear to be a slightly more elaborate concept, but since a sentence is
false iff its negation is true, you know what sentences an interpretation makes false
if you know what sentences it makes true. The only substantial difference is that
an interpretation is subject to certain restrictions compared to a general theory:

(1) Aninterpretation of L must require every sentence variable in L to be either
true or false (and not both).

(2) An interpretation of L must require L to be false.

(3) For every pair of sentences ¢ and v in L, an interpretation of L must require
¢ — 1 to be true iff it requires ¢ to be false or requires ¥ to be true (or
both).

Formally, we can define a function f on the set of the interpretations of L by the
rule that for every interpretation v of L, we have

f) ={¢:v(9) =1} U{=¢: v(¢) = 0}.
This function f is an injection into the set of the theories in L. But it is not
surjective—for every theory M in L, the value f~1(M) exists only if the statements
below hold:
(1) For every sentence variable A in L, exactly one of A and —A is a member
of M.
(2) L& M.
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(3) For every pair of sentences ¢ and v in L, we have ¢ — ¢ € M iff ¢ € M or
PeM.

An interpretation could reasonably be defined as a theory M in L with properties
(1)-(3) above.

Now, the completeness theorem says that every syntactically consistent theory
in L is semantically consistent, i.e. has a model. A model of a theory T in L
is an interpretation of L under which every member of T is true, so if we adopt
the definition of interpretations as theories, we can say that a model of T is an
extension of T" which is an interpretation of L. This leads us to the idea that in
order to construct a model of an arbitrary syntactically consistent theory T in L,
we will have to extend T by adding new members.

But how exactly do we extend 17 Here, it helps to recall the soundness theorem,
which says that for every theory T in L, every syntactic consequence of T is a
semantic consequence of T'. In particular, if 7" F L, then 77 |= L. Contrapositively,
if T” is semantically consistent, then T” is syntactically consistent. Now, every
interpretation of L, thought of as a theory in L, is semantically consistent (since
it has itself as an extension) and hence, by soundness, syntactically consistent.
Therefore one thing we definitely need to do as we add new members to 7', in
order for it to eventually become an interpretation of L, is preserve the syntactic
consistency of T'.

In fact, it’s not too difficult to see that every theory M in L which can be thought
of as an interpretation of L is not only syntactically consistent, but mazimally
syntactically consistent: every proper extension of M is syntactically inconsistent.

To see this, first, observe that for every sentence ¢ in L, since —¢ abbreviates
¢ — L, property (3) tells us that =¢p € M iff € M or L € M; and M never
contains 1. So we have ~¢ € M iff ¢ & M. In other words, M contains exactly
one of ¢ and —¢.

Now, suppose M’ is a proper extension of M. Then it has a member ¢ which
is not a member of M. The negation of ¢ must then be a member of M. Since
M’ extends M, it follows that —¢ € M’. But we also have ¢ € M’. Since every
member of M’ is a syntactic consequence of M’ it follows that M’ is syntactically
inconsistent.

Now that we know every interpretation of L is maximally syntactically consistent,
the natural next question to ask is whether the converse holds, i.e. every maximally
syntactically consistent theory T in L is an interpretation of L. If the converse
does hold, then to prove the completeness theorem, all we need to do is extend a
syntactically consistent theory to a maximal syntactically consistent theory. As it
happens, the converse does hold.

Lemma 1. For every mazimally syntactically consistent theory M in L and every
sentence ¢ in L, exactly one of ¢ and —¢ is a member of M.

Proof. Suppose M is a maximally syntactically consistent theory in L and ¢ is a
sentence in L.

If M contains both ¢ and —¢, then M is syntactically inconsistent. So M contains
at most one of ¢ and —¢.

If M contains neither ¢ nor =¢, then MU{¢} and MU{—¢} are proper extensions
of M and hence are syntactically inconsistent, from which it follows by negation
introduction and elimination that M syntactically implies both ¢ and —¢, and
hence is syntactically inconsistent. So M contains at least one of ¢ and —¢. (]
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Theorem 1. Every mazimally syntactically consistent theory M in L is an inter-
pretation of L.

Proof. Suppose M is a maximally syntactically consistent theory in L.

For every sentence variable A in L, exactly one of A and —A is a member of M
by the lemma above.

If 1L € M, then M syntactically implies L and hence is syntactically inconsistent;
so we have | ¢ M.

Suppose ¢ and 9 are sentences in L. We shall prove that ¢ — ¢ € M iff ¢ ¢ M
or ¢y € M.

For the forward implication, suppose ¢ — p € M. If ¢ € M and ¢ ¢ M, i.e.
-y € M, then M syntactically implies both ¢ — ¢ and =1, so by modus tollens it
follows that M F —¢. But we also have M F ¢, so M is syntactically inconsistent.
This is a contradiction, so one of ¢ € M and ¥ ¢ M must not hold.

For the backward implication:

(1) First, suppose ¢ € M, i.e. ~¢p € M. Then M —¢, so M+ ¢ — ).

(2) Second, suppose ¥ € M. Then M + ¢ and hence M + ¢ — 1.
Either way, we have M F ¢ — 1. Therefore, if ¢ — ¢ & M, i.e. =(¢p = p € M),
so that M + —(¢ — 1), we have that M is syntactically inconsistent, which is a
contradiction. So ¢ — ¢ € M. O

Now, to complete the proof, we just need to prove that an arbitrary syntacti-
cally consistent theory T in L can be extended until it is maximally syntactically
consistent. The standard tool for carrying out such proofs is Zorn’s lemma. (There
are other techniques that can be used, like transfinite induction; if you’re not too
familiar with proofs like this, using transfinite induction generally makes things
clearer. But Zorn’s lemma makes the proof more concise, so that’s what I'll use
here.)

Note that we make use of the “syntactic compactness theorem” here, which says
that a theory is syntactically consistent iff each of its finite subsets is syntactically
consistent. Unlike the semantic compactness theorem, which is most straightfor-
wardly proven as a consequence of completeness, the syntactic compactness theorem
is trivial; it essentially follows from the fact that proofs are finite and hence any
proof of 1 only makes use of finitely many axioms.

Theorem 2. FEvery syntactically consistent theory has a mazimal syntactically con-
sistent extension.

Proof. Suppose T is a syntactically consistent theory. To prove that T has a maxi-
mal syntactically consistent extension, we shall use Zorn’s lemma; so suppose 7 is
a chain of syntactically consistent extensions of T' and let 7" be the union of the
theories in 7. To prove that T” is consistent, we shall use the syntactic compactness
theorem; so suppose U = {¢1, d2, ..., ¢, } is a finite subset of T. In the case where
U is empty, it is certainly syntactically consistent. Otherwise, let 11, T5, ...and T,,
be theories in 7 containing ¢1, @9, ...and ¢, respectively. Then {T1,T5,...,T,} is
a finite chain, so it has a maximum U’, which is syntactically consistent and extends
U. Therefore U, having a syntactically consistent extension, must be syntactically
consistent itself. O



