
TRICKS IN COMPUTER ARITHMETIC

ANDREW FOOTE

People who do a lot of mental arithmetic often make use of “tricks” to carry out
calculations. An example familiar to most people is that you can multiply an integer
represented by its decimal expansion by 10 by simply adding an extra 0 digit: for
example, 321 times 10 is 3210. Another trick, which not so many people are familiar
with, is that in order to determine whether an integer is divisible by 3 it suffices
to examine the sum of the digits in its decimal expansion: the original integer is
divisible by 3 if and only if this sum is. For example, 321 must be divisible by 3
because 3 + 2 + 1 = 6, and 6 is divisible by 3. The defining characteristic of tricks
like these is that they enable people to do less calculations to reach their result,
reducing the time taken, the cognitive effort required and the likelihood of error,
while at the same time only being applicable in a limited range of circumstances,
so that they are unable to fully replace the more cumbersome but more general
algorithms that are taught to us in school.

It might come as a surprise to learn that computers also make use of such tricks.
Computers can achieve much greater speeds and have a greater working memory
capacity than humans, and it hardly matters how much effort they have to go to
calculate things; and they hardly ever make errors, provided they are making use of
a correct algorithm.1 So one might think they wouldn’t need to resort to tricks. But
computers often need to perform lots of arithmetic calculations in a short amount
of time, and in such circumstances, any slight speed up in one of the individual
operations can have an arbitrarily large effect on the speed of the whole procedure,
depending on how many times the operation needs to be repeated. So it’s primarily
the fact that tricks increase the speed of calculation that makes them worthwhile
for computers.

A big difference between computers and humans, when it comes to arithmetic,
is that computers represent integers by their binary expansions, rather than their
decimal expansions. But a lot of the tricks humans use can still be transferred fairly
straightforwardly to the binary environment. For example, whereas adding a zero
digit multiplies the value of a decimal expansion by 10, adding a zero digit multiplies
the value of a binary expansion by 2. So computers are best at multiplying by 2,
rather than by 10. This is actually a lot more useful—it’s more often necessary to
double a quantity than to multiply it by 10.

What about the trick for checking whether an integer is divisible by 3? Does
that have a binary counterpart? Well, let’s think about how this trick works. It’s

1Absolutes are rarely true, of course. All else being equal, it’s better for a computer to have

a longer battery life, and this is facilitated by it not having to carry out too many complex
operations. But this isn’t a critical concern, compared to things like the capacity of the computer
to do what the user wants in a reasonable amount of time, considering that its battery can always

be recharged. Likewise, there is a small chance of a freak mechanical failure with every operation,
so the more operations are done, the more likely such errors are; however, the base chance is still

so low that this hardly ever becomes a matter of concern to users.

1



2 ANDREW FOOTE

basically a consequence of the fact that 10 is congruent to 1 modulo 3. If we have
an integer x whose decimal expansion is made up of the digits d0, d1, . . . and dn (in
that order, from least significant to most significant), then we have the equation

x = d0 + 10d1 + · · ·+ 10ndn =

n∑
k=0

10kdk.

Now, if we only care about congruence modulo 3, we can replace the terms in
the sum on the right-hand side with terms that are congruent modulo 3 to the
original terms. We can also replace factors within those terms by factors that are
congruent modulo 3 to the original factors. In particular, we can replace the 10s
by 1s. Since 1 is the multiplicative identity, this allows us to eliminate the factors
of 10. Therefore, we have the congruence

x ≡
n∑

k=0

dk (mod 3).

That is, the value of x modulo 3 is the same as the value modulo 3 of the sum of
the digits in the decimal expansion of x. This proves that the trick works, because
x being divisible by 3 is equivalent to x being congruent to 0 modulo 3. In fact it
gives us two more tricks: an integer is 1 plus a multiple of 3 if and only if the sum
of its digits is also 1 plus a multiple of 3, and an integer is 1 minus a multiple of 3
if and only if the sum of its digits is also 1 minus a multiple of 3.

Now, if d0, d1, . . . and dn are binary bits rather than decimal digits, then we
must start with the equation

x = d0 + 2d1 + · · ·+ 2nd
n =

n∑
k=0

2kdk,

with the digits being multiplied by powers of 2 rather than powers of 10. The
number 2 is congruent to −1, not 1, modulo 3. But this still allows us to do some
simplification, since (−1)k is 1 for even integers k and −1 for odd integers k. The
congruence simplifies to

x ≡
n∑

k=0

(−1)kdk (mod 3),

showing that x is congruent modulo 3 to the alternating sum of its bits.
A computer could calculate this alternating sum by simply iterating over the bits

of x, alternating between an adding and subtracting state. However, this wouldn’t
be very efficient; it would require as many iterations as x has bits, which means
it would likely be no quicker than simply using the division algorithm a lot of the
time.

It is possible to do better. Rather than taking each bit as a unit, we can take
each two-bit segment as a unit. This will eliminate the need to explicitly alternate
between addition and subtraction. So, assuming n is odd (so that x has an even
number of bits, including the one with place value 1), we may write

x ≡

n−1
2∑

k=0

(d2k − d2k+1) (mod 3).



TRICKS IN COMPUTER ARITHMETIC 3

Now here’s something neat: −1 is congruent to 2 modulo 3! So we can also write
this congruence as

x ≡

n−1
2∑

k=0

(d2k + 2d2k+1) (mod 3).

Now, for every integer k between 0 and n−1
2 inclusive, the sum d2k + 2d2k+1 is

just the value of the two-bit integer whose bits are d2k (least significant) and d2k+1

(most significant). So we can state the binary rule for divisibility by 3 as follows:

A binary expansion has a value divisible by 3 if and only if the sum
of the values of its two-bit segments, interpreted as independent
binary expansions, is divisible by 3. More generally, its value is
congruent to this sum modulo 3.

This rule can be straightforwardly applied in a computer program. It’s just a
matter of summing segments. Once we have the sum, we can use a lookup table
to determine its value modulo 3, since the set of possible values of the sum will be
much smaller than the set of possible values of the original integer. The summing
of the segments can be done in parallel using bitwise operations in an unrolled loop.
Here’s an implementation in the C programming language.

unsigned mod3(unsigned x) {

static unsigned TABLE[48] = {

0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2,

0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2,

0, 1, 2, 0, 1, 2

};

/* Sum adjacent 2-bit segments in parallel. Note that 0x33333333 is

8 repetitions of the bit sequence 0011, and 0xcccccccc is 8

repetitions of the bit sequence 1100. */

x = (x & 0x33333333) + ((x & 0xcccccccc) >> 2);

/* Sum adjacent 4-bit segments in parallel. Note that 0x0f0f0f0f is

4 repetitions of the bit sequence 00001111, and 0xf0f0f0f0 is 4

repetitions of the bit sequence 11110000. */

x = (x & 0x0f0f0f0f) + ((x & 0xf0f0f0f0) >> 4);

/* Sum adjacent 8-bit segments in parallel. Note that 0xff00ff00 is

2 repetitions of the bit sequence 0000000011111111, and 0xf0f0f0f0

is 2 repetitions of the bit sequence 1111111100000000. */

x = (x & 0xff00ff00) + ((x & 0x00ff00ff) >> 8);

/* Sum the two 16-bit segments. */

x = (x & 0x0000ffff) + ((x & 0xffff0000) >> 16);

return TABLE[x];

}

Unfortunately, this implementation does not appear to actually be more efficient
than a regular modulo operation. I wrote a profiler for the routine (the source code
is available on GitHub at https://github.com/Andrew-Foote/odds-and-ends/

https://github.com/Andrew-Foote/odds-and-ends/blob/master/mod3.c


4 ANDREW FOOTE

blob/master/mod3.c—note that it is not written to be portable) and ran it on
Windows using Microsoft’s Visual C++ compiler. I also profiled the calculation of
values modulo 3 using the ordinary modulo operator for comparison. 16777216 calls
to the my subroutine took about 200 milliseconds, but 16777216 ordinary modulo
operations took only about 150 milliseconds.

Of course, it may be that the method could be more efficient than a regular
modulo operation if my code was better. I’m not very experienced with this kind
of programming.

1. Another trick

Although our trick of summing the 2-bit segments didn’t pay off, we can find a
trick that does pay off by simply taking a C program that computes values modulo
3 in the obvious way, using the modulo operator, and compiling this program with
an optimizing compiler. An optimizing compiler will optimize whatever it can, so
if there is a trick that can be used to calculate values modulo 3 more efficiently, the
compiler should make use of it.

To see the assembly output from a compiler, there’s no need to actually run a
local compiler: Matt Godbolt’s Compiler Explorer tool at https://godbolt.org

has got you covered. It’s a very neat website that lets you choose from an array
of different compilers for different languages hosted on its own servers, so that you
can quickly compare outputs.

Here’s the code for a C function which does an ordinary modulo operation. It
deals with unsigned (non-negative) integers only, to keep things maximally simple.

unsigned mod3(unsigned x) {

return x % 3;

}

Compiling with the GNU C Compiler (GCC), version 8.3, on an x86-64 archi-
tecture and using the -O3 flag (for maximal standards-compliant optimization), we
get this assembly output:

mod3:

mov eax, edi

mov edx, -1431655765

mul edx

mov eax, edx

shr eax

lea eax, [rax+rax*2]

sub edi, eax

mov eax, edi

ret

This clearly isn’t just doing a div. So what’s going on? In case you can’t read
x86-64 assembly, the assembly subroutine is effectively using the following formula2

2Careful readers might wonder whether this formula is oversimplified, since the multiplication

of b 2863311531x
233

c by 3 might result in overflow, in which case it would be (3b 2863311531x
233

c) mod 232

that would be subtracted from x, not the full product 3b 2863311531x
233

c. However, this multiplication

will actually never overflow. You can convince yourself of this by considering the case where x is
as large as possible, i.e. x = 232 − 1.

https://github.com/Andrew-Foote/odds-and-ends/blob/master/mod3.c
https://github.com/Andrew-Foote/odds-and-ends/blob/master/mod3.c
https://godbolt.org


TRICKS IN COMPUTER ARITHMETIC 5

to compute the value modulo 3 of the argument x:

x mod 3 = x− 3

⌊
2863311531x

233

⌋
.

In general, the remainder of an integer a on division by another integer b can
be calculated by subtracting the quotient yielded by the same division from a. So
the assembly code is really calculating bx3 c first, and then calculating the remain-
der using this value. The interesting part is the way in which it computes bx3 c.
Apparently, for nonnegative integers less than 232, we have⌊x

3

⌋
=

⌊
2863311531x

233

⌋
. (1)

Indeed, if you replace the modulo operation in our mod3 function with an integer
division operation (and rename the function with the more appropriate name of
quo3) you’ll see the assembly output below in the Compiler Explorer:

quo3:

mov eax, edi

mov edx, -1431655765

mul edx

mov eax, edx

shr eax

ret

This is just equation (1) in x86 assembly language.
So, why does this equation hold? Well, let’s have a look at this mysterious

constant 2863311531 that turns up in it. Often, when computers appear to be
using a mysterious constant, things make more sense when you look at the binary
expansion of the constant. The binary expansion of 2863311531 is this:

10101010101010101010101010101011.

Aha! It’s just 15 repetitions of the two-bit sequence 10, with an extra two 1 bits
on the end. Another way to put it is that it’s m + 1 where m is the integer whose
binary expansion is 16 repetitions of the two-bit segment 10.

What can we do with this knowledge? Well, a repeating sequence of a number of
bits or digits is nothing more than a geometric series. Let’s write m as a geometric
series:

m =

15∑
k=0

22k+1 =

15∑
k=0

2 · 22k = 2

16∑
k=0

2 · 4k.

This geometric series has initial value 2, common ratio 4 and 16 terms. Therefore,
it can be evaluated as the fraction

2
416 − 1

4− 1
= 2

232 − 1

3
=

233 − 2

3
.

Now a divisor of 3 has turned up, which is promising.
In the formula, we actually multiply x by m+ 1, not m itself. If we add 1 to the

fraction above, we get

233 + 1

3
.



6 ANDREW FOOTE

Multiplying by 2−33x, this comes out as

x + 2−33x

3
=

x

3
+

2−33x

3
.

Now, since x < 232, we have
2−33x

3
<

1

6
.

Since x
3 is an integer divided by 3, it is impossible for its floor to change when you

add a real number less than 1/3 to it. Since 2−33x
3 < 1

6 , this proves equation (1).
QED.

This technique readily generalizes to even word sizes other than 32, by the way.
If the word size is an arbitrary even integer n, then to compute b xnc we just have
to calculate 2−(n+1)x

n/2−1∑
k=0

22k+1

 .

What about moduli other than 3? If you play around with the Compiler Ex-
plorer, you’ll see that GCC uses roughly the same sequence of operations to cal-
culate values modulo any constant, so there is a general trick at work here. I may
try to reverse-engineer it in another post soon (or I may not; I don’t have a great
track record of completing planned sequences of posts on this blog :) )


	1. Another trick

