
A PROOF OF THE BOUNDEDNESS THEOREM BY

INDUCTION

Theorem (Boundedness Theorem). A continuous real-valued function on a closed
interval is bounded.

Proof. Suppose f is such a function and [a, b] is its domain. First, observe that for
every c ∈ [a, b], since f is continuous at c, there is a positive δ ∈ R such that for
every x ∈ [a, b] ∩ (c − δ, c + δ), we have f(x) ∈ (f(c) − 1, f(c) + 1). So there is a
neighbourhood of c, namely (c − δ, c + δ), on which f is bounded. Thus f is, in
a sense, locally bounded at every point in its domain; the problem is to prove that
this local boundedness implies global boundedness.

In textbook proofs of the boundedness theorem, this is generally done using what
I would regard as a trick, such as supposing f isn’t bounded and using the Bolzano-
Weierstrass theorem to obtain a contradiction. More advanced texts may appeal
to the compactness of [a, b], but the proof that [a, b] is compact (the Heine-Borel
theorem) amounts to basically the same logic, and is usually no less trickful1.

However, if we think about how to construct an algorithm to find a global bound
(often a helpful move to make—the un-situated-in-time-ness of ordinary mathemat-
ical language can be quite thought-limiting) then there is a procedure which, in my
opinion, is quite obvious and immediately suggests itself. Just start on the left,
with the singleton interval [a, a] = {a}, on which f is certainly bounded, and re-
peatedly apply local boundedness to the right endpoint, gradually expanding the
subinterval of [a, b] on which we know f to be bounded. At each step the existing
subinterval has a bound, and the neighbourhood of the right endpoint has a bound;
taking the maximum of these two bounds gives us a bound of the whole expanded
subinterval formed by unioning2 the neighbourhood with the existing subinterval.
Eventually the right endpoint will reach b and we will no longer be able to expand
it further, at which point we stop and observe that we have bounded the whole of
[a, b]. (Sanity check: why would this fail for (a, b)? Because then we wouldn’t be
able to take the right endpoint to b; there would be nowhere to stop the procedure,
without leaving a part of the right of (a, b) unbounded.)

Of course, this algorithm will not in general terminate in a finite number of steps,
but this is no issue; don’t let your thinking be limited by the arbitrary limitations
of physical machines. Obviously, it is still necessary to prove that this algorithm
will terminate, even if it takes infinitely many steps. Since we’re now dealing with
the distinctions among the infinite quantities, we’re going to need to use some
set-theoretic machinery (which is why you won’t see this proof in introductory
real analysis textbooks). I’ll assume that you are familiar with the ordinals, the
techniques of transfinite induction and recursion, and Burali-Forti’s paradox (which
says that there is no set of all ordinals).

1This word doesn’t appear to exist currently, but it needs inventing.
2Another word that needs inventing. OK, I could use “uniting”, but I suspect people wouldn’t

immediately make the connection with the union operation on sets if I used that word.
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Here’s the plan. Using transfinite recursion, we shall construct an ordinal-
indexed sequence 〈xα〉 of members of [a, b] such that every ordinal α has the fol-
lowing properties:

(1) The function f is bounded on [a, xα].
(2) We have xα ≤ xα+1, and if xα = xα+1, then xα+1 = b.

Then, since there are a proper class’s worth of ordinals and [a, b] is just a set, the
sequence 〈xα〉 will have to repeat3, so there will be ordinals α and β such that
α < β and xα = xβ . By (2), the sequence 〈xα〉 will be nondecreasing, so we will
have xα ≤ xα+1 ≤ xβ and hence xα = xα+1 = xβ = b. Then by (1), it will follow
that f is bounded on [a, b].

All we need to do to complete the proof is describe the recursion and make it
clear that it is a valid recursion (i.e. all of the assumed properties used to construct
the next term of the sequence are preserved by the constructed sequence with the
next term added).

Base case: Let x0 = a and observe that f is bounded on [a, a] = {a} by
|f(a)|.

Successor case: For every ordinal α, if we assume that xα ∈ [a, b], then
since f is continuous, there is a positive δ ∈ R such that f is bounded on
[xα, xα + δ] by some M . Let xα+1 = min(b, xα + δ), and observe that:
• If b ≤ xα+δ, then xα+1 = b and hence a ≤ xα ≤ xα+1 ≤ b. Otherwise,

we have xα+1 = xα +δ and hence a ≤ xα < xα+1 ≤ b, with the middle
inequality strict, so that we can only have xα = xα+1 when xα+1 = b.

• We have xα+1 ≤ xα + δ, so f is bounded by M on [xα, xα+1] as well
as [xα, xα + δ]. Assuming f is bounded on [a, xα] by some L, it follows
that f is bounded on [a, xα+1] by max(L,M).

Limit case: For every limit ordinal λ, let A = {xα : α < λ}. Then A
contains x0 and hence is nonempty, and is bounded above by b, so it has a
supremum. Let xλ = supA, and observe that:
• If we assume that A ⊆ [a, b], then since A is nonempty and xλ is ge

every member of A, we have xλ ≥ a; and since b bounds A above and
xλ is the smallest upper bound of A, we also have xλ ≤ b.

• Since xλ ∈ [a, b] and f is continuous, there is a positive δ ∈ R such that
f is bounded on [xλ − δ, xλ] by some M . And since xλ = supA, there
is an ordinal α < λ such that xλ − δ < xα and hence f is bounded on
[xα, xλ] by M . Assuming f is bounded on [a, xα] by some L, it follows
that f is bounded on [a, xλ] by max(L,M).

And that’s it.
Of course, this proof is a bit tedious. There might be ways to make it shorter

(maybe we can use Zorn’s lemma instead of transfinite induction). But the advan-
tage it has over other proofs of the boundedness theorem I’ve seen is that it falls
out more or less automatically, without requiring any flashes of insight. �

3This is a sort of infinitary pigeonhole principle.


