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Abstract. This project is a survey of some established results
in the field of Diophantine approximation, starting with the most
basic results, such as Dirichlet’s theorem, but focusing towards the
end on two results concerning the size of the set of the badly ap-
proximable numbers, which together state that this set is large in
one sense and small in another. The first result is that this set is
uncountable, and it is proven using a generalized Cantor set con-
struction. The second result is that the Lebesgue measure of this
set is 0, and it is proven using the Lebesgue density theorem. The
other results mentioned provide background for these two main
results.
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Notation

Varieties of numbers. The expressions N, Z, Q, R and C denote the
sets of the positive integers, integers, rational numbers, real numbers
and complex numbers, respectively. The phrase “natural number” is
avoided in favour of “positive integer”. The word “number”, when it is
not modified by any of the adjectives “rational”, “real” or “complex”,
is synonymous with “real number”.

Denominators. For every x ∈ Q, the denominator of x is the smallest
q ∈ N with qx ∈ Z. It can also be characterised as the unique q ∈ N
with x = p/q for some p ∈ Z coprime to q.

Intervals. For every pair 〈a, b〉 of real numbers such that a < b,

(a, b) = {x ∈ R : a < x < b},
(a, b] = {x ∈ R : a < x ≤ b},
[a, b) = {x ∈ R : a ≤ x < b},
[a, b] = {x ∈ R : a ≤ x ≤ b}.

Pointwise operations on functions. For every set S, every real-valued
function f on S and every c ∈ R, the expressions idS, cS and cf denote
functions on S called the identity function on S, the constant function
on S of value c, and the pointwise product of c and f , respectively, and
for every x ∈ S,

idS(x) = x,

cS(x) = c,

(cf)(x) = c(f(x)).

Also, if f(x) > 0 for every x ∈ S, then f c denotes a function on S and
for every x ∈ S,

(f c)(x) = (f(x))c.

Pointwise operations on sets. For every set S ⊆ R and every c ∈ R,

cS = {cx : x ∈ S}.

Limits inferior and limits superior. For every sequence 〈Sn〉n∈N of sets,

lim inf
n→∞

=
∞⋃
m=1

∞⋂
n=m

Sn,

lim sup
n→∞

=
∞⋂
m=1

∞⋃
n=m

Sn.
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The common denotation of the expressions on both sides of the former
equation is called the limit inferior of 〈Sn〉n∈N. The common denota-
tion of the expressions on both sides of the latter equation is called the
limit superior of 〈Sn〉n∈N.

The members of the limit inferior of 〈Sn〉n∈N are the entities x such
that x ∈ Sn for every sufficiently large n ∈ N. The members of the limit
superior of 〈Sn〉n∈N are the entities x such that there are arbitrarily
large n ∈ N with x ∈ Sn.

Integer parts and fractional parts. For every x ∈ R,

[x] = min
n∈Z
n≤x

n,

〈x〉 = x− [x],

‖x‖ =

{
〈x〉 if 〈x〉 ≤ 1/2,

1− 〈x〉 if 〈x〉 > 1/2.

The expressions [x] and 〈x〉 are called the integer part and fractional
part of x, respectively. Note that x = [x] + 〈x〉, which is why the word
“part” is used. The expression ‖x‖ has no name of its own, but it
may referred to as the distance between x and the closest integer to x,
because [x] and [x] + 1 are clearly the closest two integers to x, and
the distance between x and [x] is 〈x〉 and the distance between x and
[x] + 1 is 1− 〈x〉.

Note that:

(1) [x] is the unique n ∈ Z such that n ≤ x < n+ 1.
(2) 〈x〉 is the unique d ∈ R such that d < 1 and x− d ∈ Z.
(3) ‖x‖ is the unique d ∈ R such that d ≤ 1/2 and at least one of

x− d and d− x is integral.

1. Introduction

A Diophantine equation is an equation of the form

(1) pu = qv,

where u and v are real numbers and p and q are unknown integers. The
term “Diophantine equation” can also be used to refer to members of
other classes of equations, but it will be used to refer to members of
this specific class of equations in this document.

Let’s briefly remark on the solutions of (1). If a = b = 0 then clearly
every pair 〈p, q〉 of integers is a solution. Otherwise, we can assume
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without loss of generality that a 6= 0, in which case (1) is equivalent to
the equation

(2) p = qx,

where x = v/u. Clearly 〈0, 0〉 is a solution of this equation, and it is in
fact the only solution of the form 〈p, 0〉 where p ∈ R. Let’s call 〈0, 0〉
the trivial solution of (2). For every non-trivial solution 〈p, q〉 of (2),
we have q 6= 0, and therefore the non-trivial solutions of (2) are exactly
the solutions of

(3)
p

q
= x.

The set of values which the left-hand side of (3) may evaluate to,
given that p and q are integers, is exactly Q. Therefore, (3) has a
solution if and only if x ∈ Q. In this case, there is a unique solution
〈p, q〉 of (3) with gcd(p, q) = 1 and q > 0, and every other solution of
(3) is of the form 〈mp,mq〉 with m ∈ Z and m 6= 0.

If x 6∈ Q, then (3) has no solution. But it does have the next best
thing—an approximate solution. For every positive ε ∈ R, let’s call a
pair 〈p, q〉 of integers an approximate solution of (3) with error ε if and
only if

(4)

∣∣∣∣x− p

q

∣∣∣∣ = ε.

For every such pair 〈p, q〉, the rational number p/q is at a distance of ε
from x. In other words, it is a rational approximation of x with error
ε. Moreover, for every rational number p/q at a distance of ε from x,
where p and q are integers and p 6= 0, the pair 〈p, q〉 is a solution of
(4). The problem of finding solutions of (4) for a given set of values
of ε, which is an example of a problem of Diophantine approximation,
is therefore essentially the same as the problem of finding rational ap-
proximations of x with errors in a given set, which is the problem of
rational approximation. Thus the terms “Diophantine approximation”
and “rational approximation” are used as synonyms.

There is in fact a whole field of mathematics which is known as Dio-
phantine approximation or rational approximation. The problem just
described is really only a very specific example of a problem that this
field deals with, and it has a very simple solution which we shall de-
scribe in the next section. However, we shall move on to more general
forms of the problem afterwards, which are more mathematically in-
teresting. Our examination of these more general forms will naturally
lead to the definition of badly approximable numbers, and the final two
sections of the project will give proofs of two results on the size of the
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set of the badly approximable numbers, namely that it is uncountable
and that its Lebesgue measure is 0.

2. The density of Q in R

One of the well-known properties of the real line is that rational
numbers are densely distributed along it. That is, for every pair 〈a, b〉
of real numbers such that a < b, there is an x ∈ Q with a < x < b.
Now, for every x ∈ R and every positive ε ∈ R, we have x− ε < x+ ε,
and therefore there is an r ∈ Q with x− ε < r < x+ ε. This chain of
inequalities is equivalent to the single inequality

|x− r| < ε.

Given that r ∈ Q, there are integers p and q with r = p/q, and therefore
〈p, q〉 is an approximate solution of (3) with error less than ε. It follows
that (3) has approximate solutions with arbitrarily small errors. In
other words, every real number is arbitrarily closely approximable by
rational numbers.

For the integers, the situation is different. The integers are not
densely distributed along the real line. In fact, they have the opposite
property: for every x ∈ R \ Z, there is a punctured neighbourhood
of x which is disjoint from Z, namely (x − ‖x‖, x + ‖x‖) \ {x}, and
therefore x is not arbitrarily closely approximable by integers. The set
Z is therefore said to be nowhere dense in R.

More generally, for every q ∈ N and every x ∈ R, there is a p ∈ Z
with ‖qx‖ = |qx− p|, and we have

‖qx‖
q

=
|qx− p|

q
=

∣∣∣∣qx− pq

∣∣∣∣ =

∣∣∣∣x− p

q

∣∣∣∣ .
For every other p′ ∈ Z, we have |qx − p′| ≥ ‖qx‖ which implies |x −
p′/q′| ≥ |x − p/q|. It follows that the closest rational numbers to x of
the form p/q with p ∈ Z are at a distance of ‖qx‖/q from x.

Now, for every Q ∈ N, let

SQ =

Q⋃
q=1

Z/q.

Then the members of SQ are the rational numbers of the form p/q,
where p ∈ Z and 0 < q ≤ Q, and for every x ∈ R \ SQ, the punctured
neighbourhood (

x−
Q

min
q=1

‖qx‖
q

, x+
Q

min
q=1

‖qx‖
q

)
\ {x},

is disjoint from SQ. Therefore, SQ is nowhere dense, just like Z.
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The upshot of this is that although every irrational number x is ar-
bitrarily closely approximable by rational numbers, the denominator of
every sufficiently close rational approximation of x is arbitrarily large.
That is, for every sequence 〈pn/qn〉n∈N of rational approximations of
x with |x − rn| → 0 as n → ∞, where pn/qn is an irreducible fraction
for every n ∈ N, we also have qn → ∞ as n → ∞. Otherwise, there
is a Q ∈ N such that x is arbitrarily closely approximable by ratio-
nal numbers whose denominators are less than or equal to Q, and this
is impossible because SQ is nowhere dense. There is thus a trade-off
between error and denominator magnitude in the rational approxima-
tion of irrational numbers. The closer the approximation has to be,
the greater its denominator has to be. Of course, the same is not true
for rational numbers because every rational number approximates itself
perfectly with error 0.

3. Approximating functions

Suppose x ∈ R, Ψ is a positive real-valued function on N, p ∈ Z
and q ∈ N. In light of the trade-off between error and denominator
magnitude described in the previous section, the ratio

|x− p/q|
Ψ(q)

is interesting. Rational numbers with smaller denominators can be con-
sidered simpler than those with larger denominators, so, if two rational
approximations have the same errors, the one with the smaller denomi-
nator can be considered better. But even if the errors are different, with
the more complex approximation having a smaller error, we might still
prefer the simpler approximation if the difference is sufficiently small.
One way of making a definite choice between the two approximations
is to compare the ratios |x−p1/q1|/Ψ(q1) and |x−p2/q2|/Ψ(q2), where
p1/q1 and p2/q2 are the irreducible fraction expressions of the two ap-
proximations, and to prefer the approximation on which the smaller
ratio depends. These ratios can be thought of as the “relative errors”
of the two approximations, as opposed to the absolute errors |x−p1/q1|
and |x−p2/q2| which do not take into account the sizes of the denomina-
tors. Exactly how the sizes of the denominators are taken into account
by the relative errors is determined by the nature of the function Ψ
(about which we have supposed nothing besides that its range is a set
of positive real numbers). For example, if Ψ(q) = 1/q2 for every q ∈ N,
then it takes a greater difference to cause us to prefer the more complex
approximation than if Ψ(q) = 1/q for every q ∈ N.
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These considerations lead us to a more general formulation of the
problem of Diophantine approximation. Diophantine approximation is
the problem of finding solutions of the inequality

(5)

∣∣∣∣x− p

q

∣∣∣∣ < Ψ(q)

where x ∈ R, Ψ is a positive real-valued function on N, p and q are
unknown integers and q > 0. The solutions of (5) are the pairs 〈p, q〉
of integers with q > 0 such that the relative error of p/q with respect
to Ψ, i.e. |x − p/q|/Ψ(q), is less than 1. Of course, there is nothing
special about relative errors less than 1 in particular. But for every
positive ε ∈ R, the solutions of the inequality

(6)

∣∣∣∣x− p

q

∣∣∣∣ < εΨ(q),

i.e. the pairs (p, q) of integers with q > 0 and |x− p/q|/Ψ(q) < ε, are
exactly the solutions of the inequality (5) under the subsitution of the
function εΨ in place of Ψ.

In this document we shall concentrate on the question of how many
solutions (5) has for given choices of x and Ψ. Let’s first note that for
every n ∈ Z and every pair (p, q) of integers such that q > 0,∣∣∣∣(x+ n)− p

q

∣∣∣∣ =

∣∣∣∣x− p− qn
q

∣∣∣∣ ,
so if we let S be the set of the pairs 〈p, q〉 of integers such that q > 0
and ∣∣∣∣(x+ n)− p

q

∣∣∣∣ < Ψ(q),

and we let T be the set of the solutions of (5), then for every p ∈ Z
and every q ∈ Z, we have 〈p, q〉 ∈ S if and only if 〈p − qn, q〉 ∈ T . In
other words, S is the image of T under the function f on Z×N such
that f(p, q) = 〈p− qn, q〉 for every p ∈ Z and every q ∈ N. Now, this
function f is injective, because for every pair 〈〈p, q〉, 〈p′, q′〉〉 of members
of Z×N, the equation f(p, q) = f(p′, q′) is equivalent to 〈p− qn, q〉 =
〈p′ − q′n, q′〉 and this equation is in turn equivalent to the conjunction
of the equations p−qn = p′−q′n and q = q′. The latter equation in the
conjunction implies that qn = q′n and therefore the former equation is
equivalent to p = p′. It follows that the restriction of f to the domain
T is a bijection onto S, and therefore #S = #T . This means that the
number of solutions of (5) is invariant under substitution of expressions
of the form x − n, with n ∈ Z, in place of x. In particular, for every
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x ∈ R with x 6∈ I, where
I = [0, 1),

we have 〈x〉 ∈ I, and the number of solutions of (5) is invariant under
substitution of 〈x〉 in place of x. In our investigation of how many
solutions (5) has for given choices of x and Ψ, we may therefore restrict
our attention to choices of x with x ∈ I. This conveniently simplifies
the investigation in some respects, due to the property of boundedness
possessed by I but not R.

Let W1(Ψ) denote the set of the x ∈ I such that there is at least one
solution of (5). Clearly, W1(Ψ) is simply the intersection of I and the
union of the open intervals of the form]

p

q
−Ψ(q),

p

q
+ Ψ(q)

[
,

where q ∈ N and 0 ≤ p ≤ q. Therefore, W1(Ψ) is an open set.
More generally, for every n ∈ N, let Wn(Ψ) denote the set of the x ∈

I such that there are at least n solutions of (5). Then Wn(Ψ) is always
the the intersection of I and the union of all of the n-ary intersections
of pairwise distinct open intervals of the form above. Because finite
intersections of open sets are open themselves it follows that Wn(Ψ) is
open, and therefore Wn(Ψ) is a union of open intervals in R.

In this document we shall concentrate on the question of for which
choices of x there are infinitely many solutions of (5). The x ∈ R for
which this is the case are said to be Ψ-approximable or approximable to
the order of Ψ. In addition, the function Ψ is said to be an approximat-
ing function of every such number, and the set of the Ψ-approximable
members of I is denoted W (Ψ).

There is a slightly different characterisation of the Ψ-approximable
numbers which it is useful to be familiar with. First, note that for
every x ∈ R, every p ∈ Z and every q ∈ N, (5) is equivalent to

(7) |qx− p| < qΨ(q),

and therefore the the set S of the p ∈ Z such that (5) holds is (qx −
qΨ(q), qx+qΨ(q))∩Z, which is finite (in fact, it has at most [2qΨ(q)]+1
members). It follows that (5) has infinitely many solutions if and only
if there are infinitely many q ∈ N such that (5) has a solution of the
form 〈p, q〉 with p ∈ Z.

Proposition 1. For every x ∈ I and every positive real-valued function
Ψ on N, x is Ψ-approximable if and only if there are infinitely many
q ∈ N such that

(8) ‖qx‖ < qΨ(q).
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Proof. Suppose x ∈ I and Ψ is a positive real-valued function on N. If
x is Ψ-approximable, then there are infinitely many q ∈ N such that
(5) has a solution of the form 〈p, q〉, where p ∈ Z. Given that q > 0,
(5) is equivalent to (7), and we have ‖qx‖ ≤ |qx− p| by the definition
of ‖qx‖, which together with (7) implies that (8) holds. And this is the
case for all of the infinitely many such q.

If there are infinitely many q ∈ N such that (8) holds, then for every
such q there is a p ∈ Z with that ‖qx‖ = |qx − p| and therefore (7)
holds, which is equivalent to (5). �

Note that W (Ψ) can be expressed as a limit superior of a sequence
of finite unions of open intervals:

W (Ψ) = lim sup
q→∞

I ∩
q⋃
p=0

(
p

q
−Ψ(q),

p

q
+ Ψ(q)

)
.

However, the limit superior of a sequence of finite unions of open in-
tervals is not necessarily open itself, so W (Ψ) has a more interesting
structure than the sets of the form Wn(Ψ) with n ∈ N, which are
merely unions of open intervals.

3.1. Strongly approximating functions. Another property of real
numbers x relating to solutions of (5) that we might naturally be in-
terested in is strong Ψ-approximability. We shall say that x is strongly
Ψ-approximable, or that x is strongly approximable to the order of Ψ,
or that Ψ is a strongly approximating function of x, if and only if for
every positive real number ε, the equation (6)∣∣∣∣x− p

q

∣∣∣∣ < εΨ(q)

has at least one solution. The set of the strongly Ψ-approximable
members of I is denoted W ∗(Ψ). The members of W ∗(Ψ) are exactly
the members of I approximable by rational numbers with arbitrarily
small relative errors with respect to Ψ.

It is not too difficult to see that strong Ψ-approximability implies
Ψ-approximability.

Proposition 2. For every positive real-valued function Ψ on N,

I ∩Q ⊆ W (Ψ).

Proof. Suppose x ∈ I ∩Q and Ψ is a positive real-valued function on
N. Then there is a q ∈ N such that q > 0 and qx ∈ Z. Because q > 0,
we have

q < 2q < 3q < . . .
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and for every n ∈ Z, we have nqx ∈ Z, because qx ∈ Z, and therefore
‖nqx‖ = 0. It follows that x is Ψ-approximable. �

Proposition 3. For every positive real-valued function Ψ on N,

W ∗(Ψ) ⊆ W (Ψ).

Proof. Suppose Ψ is a positive real-valued function on N and x is a
strongly Ψ-approximable number. If x ∈ Q then it is Ψ-approximable
by Proposition 2; we do not even need to use the assumption of strong
Ψ-approximability of x in this case. So let us now suppose that x 6∈ Q.

By the definition of strong Ψ-approximability there is certainly at
least one solution 〈P,Q〉 of (5), because 1 is a positive real number like
any other. Now, for every integer n ≥ Q, if we let

c = min
〈p,q〉∈Z2

0<q≤n

|x− p/q|
Ψ(q)

,

then c ≤ |x− P/Q|/Ψ(Q) < 1. Given that x 6∈ Q, we have c > 0, and
therefore, by the strong Ψ-approximability of x, the inequality∣∣∣∣x− p

q

∣∣∣∣ < cΨ(q).

has a solution 〈p, q〉. This inequality implies that |x − p/q| < Ψ(q)
(because c < 1) and is equivalent to |x − p/q|/Ψ(q) < c, from which
it follows that q > n. Therefore, there is a solution 〈p, q〉 of (5) with
q > n. This is the case for every n ≥ Q, so (5) has solutions 〈p, q〉 with
q arbitrarily large. Therefore, x is Ψ-approximable. �

It is also easy to see that strong Ψ-approximability implies strong
cΨ-approximability for every c ∈ R with c > 0.

Proposition 4. For every positive real-valued function Ψ on N and
every c ∈ R with c > 0,

W ∗(Ψ) ⊆ W ∗(cΨ).

Proof. Suppose Ψ is a positive real-valued function on N, c ∈ R, c > 0
and x is a strongly Ψ-approximable number. Then for every positive
ε ∈ R, εc > 0 and therefore the inequality∣∣∣∣x− p

q

∣∣∣∣ < εcΨ(q)

has a solution, so x is strongly cΨ-approximable. �
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From Proposition 4 together with Proposition 3 it follows that strong
Ψ-approximability implies εΨ-approximability for every positive ε > 0.
Moreover, the converse is obviously true because the existence of infin-
itely many of something implies the existence of one of it. Therefore,
we have a characterisation of strong Ψ-approximability in terms of Ψ-
approximability.

Proposition 5. For every positive real-valued function Ψ on N,

W ∗(Ψ) =
⋂
ε∈R
ε>0

W (εΨ).

3.2. The approximability hierarchy. Let’s now consider how the Ψ-
approximability conditions for different positive real-valued functions
Ψ on N are logically related to another. In particular, we shall describe
how the conditions can be ordered by their “strength” (that is, which
conditions they imply and are implied by).

Proposition 6. For every pair of positive real-valued functions Φ and
Ψ on N such that Φ(q) ≤ Ψ(q) for every sufficiently large q ∈ N,

W (Φ) ⊆ W (Ψ).

Proof. Suppose Φ and Ψ are positive real-valued functions on N, Q ∈
N, Φ(q) ≤ Ψ(q) for every q ∈ N such that q > Q, and x is a Φ-
approximable number. Then there are infinitely many q ∈ N such
that

‖qx‖ < qΦ(q),

and at most Q of these are less than or equal to Q, so for the remaining
q ∈ N, of which there are infinitely many, (5) holds in addition to
the inequality above because qΦ(q) ≤ qΨ(q). It follows that x is Ψ-
approximable. �

If two positive real-valued functions Φ and Ψ on N satisfy the con-
dition that Φ(q) ≤ Ψ(q) for every sufficiently large q ∈ N, then, and
only then, we shall say that Φ is less than or equal to Ψ and write
Φ ≤ Ψ. Thus we partially order the positive real-valued functions on
N. Proposition 6 says that if Φ ≤ Ψ, then W (Φ) ⊆ W (Ψ). The posi-
tive real-valued functions on N are thus ordered by the strength of the
approximability conditions defined with reference to them.

Note also that Φ and Ψ are related by the asymptotic equation

(9) Φ(q) = o(Ψ(q)) (q →∞)

if and only if Φ ≤ εΨ for every positive ε > 0, and therefore (9) implies
that W (Φ) ⊆ W ∗(Ψ).
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The order relation that we have just defined is only partial. But it
does totally order some sets of positive real-valued functions on N. One
example is the set of all functions on N of the form idτN, where τ ∈ R.
Let’s introduce some convenient terminology relating to functions of
this form specifically. For every x ∈ R and every τ ∈ R, x is said to
be approximable to the order τ if and only if it is id−τN -approximable.
Likewise, x is said to bestrongly approximable to the order τ if and only
if it is strongly idτN-approximable.1

The approximating functions that we shall refer to in the rest of this
document are mainly of the form c id−τN , where c is a positive real num-
ber and n is a non-negative real number. It may be helpful to write
down a list of representative approximability conditions defined with
reference to functions of this form, listed in order from strongest to
weakest, so that the list can be thought of as a hierarchy of approx-
imability conditions. Note that this list is by no means complete; other
conditions could be added at the end, or in between items.

(1) cN-approximability for some c ∈ R such that c > 0
(a) cN-approximability for some c ∈ R such that c > 1
(b) approximability to the order 0
(c) cN-approximability for some c ∈ R such that 0 < c < 1

(2) strong approximability to the order 0
(3) c id−1N -approximability for some c ∈ R such that c > 0

(a) c id−1N -approximability for some c ∈ R such that c > 1
(b) approximability to the order 1
(c) c id−1N -approximability for some c ∈ R such that 0 < c < 1

(4) strong approximability to the order 1
(5) c id−2N -approximability for some c ∈ R such that c > 0

(a) c id−2N -approximability for some c ∈ R such that c > 1
(b) approximability to the order 2
(c) c id−2N -approximability for some c ∈ R such that 0 < c < 1

(6) strong approximability to the order 2

A member of R can be considered to be “positioned at” some place
in the hierarchy of approximability conditions if it satisfies the approx-
imability condition at that place (which implies that it satisfies all the
approximability conditions given in the previous items), but it does not
satisfy the approximability condition at the next place. In the next sec-
tion, we describe the members of I that are positioned at some of the
places in the hierarchy.

1Note that this terminology is different from that of Hardy & Wright in [3] (p.
158); by their definition an x ∈ R is approximable to the order τ if and only if it is
c idτN-approximable for some positive c ∈ R.
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4. Dirichlet’s theorem

We have already seen that for every x ∈ R and every positive ε ∈ R,
the inequality ∣∣∣∣x− p

q

∣∣∣∣ < ε

always has at least one solution by the density of Q in R. This means
that W ∗(1N) = I. It is also very easy to see that for every c ∈ R such
that c > 1/2, we have W (c id−1N ) = I. In fact, for every x ∈ R and
every q ∈ N (not just infinitely many q ∈ N), we have

(10) ‖qx‖ ≤ 1

2
< c

by the definition of ‖qx‖.
This is a statement about every q ∈ N, but a much stronger state-

ments can be made about infinitely many q ∈ N. A theorem proven
by Dirichlet in 1842 implies that

(11) W ∗(id−1N ) = I.

Dirichlet’s theorem makes uses of a principle called the pigeonhole
principle, which we formally state below as Proposition 7. Informally,
the principle states that for every pair of positive integers m and n
such that m < n, if the members of a set S of n objects are distributed
among the sets in a family of m sets, then at least one of the sets in the
family will contain two or more members of S. It should be intuitively
obvious to the reader, but it can be easily proved if it is not.

Proposition 7 (Pigeonhole principle). For every set S, every family
F of pairwise disjoint sets such that #S > #F and every function f
from S to the union of F , there is at least one member of F which
contains the images under f of two distinct members of S.

Theorem 1 (Dirichlet, 1842). For every x ∈ R and every n ∈ N,
there is a q ∈ N such that

(12) ‖qx‖ < 1

n
.

Proof. Suppose x ∈ R and n ∈ N. Then the function f on {0, 1, . . . , n}
such that f(k) = 〈kx〉 for every k ∈ Z such that 0 ≤ k ≤ n has the
codomain [0, 1), which can be partitioned into the n subsets [0, 1/n),
[1/n, 2/n), . . . and [(n− 1)/n, 1). The cardinality of the domain of f is
n+1, which is greater than n, so at least one of these n subsets contains
the images under f of two distinct members r and s of the domain of



14 ANDREW FOOTE

f by Proposition 7. Because each of the subsets in the partition is an
interval of length 1/n, and not closed, it follows that

1

n
> |〈sx〉 − 〈rx〉|

= |(sx− [sx])− (rx− [rx])|
= |(s− r)x− ([sx]− [rx])|

and therefore (12) holds if we let q = s− r. If we assume without loss
of generality that r < s, then q > 0, and moreover, because 0 ≤ r ≤ n
and 0 ≤ s ≤ n, we have q ≤ n. �

For every positive ε ∈ R, if we let n = [1/ε] + 1, then n ∈ N and

1

n
=

1

[1/ε] + 1
<

1

1/ε
= ε.

Therefore, Dirichlet’s theorem implies (11). However, Dirichlet’s theo-
rem actually implies something stronger than this. It doesn’t just say
that for every n ∈ N, there is a q ∈ N such that (12) holds; it also
says that q ≤ n. Thus it gives us an upper bound on the size of the
smallest q ∈ N such that ‖qx‖ < ε, namely [1/ε] + 1. Using this upper
bound we can conclude that every real number is in fact approximable
to the order 2.

Theorem 2. Every real number is approximable to the order 2.

Proof. By Proposition 2, every rational number is approximable to the
order 2. Suppose, then, that x is an irrational number and 〈qk〉nk=1 is
a finite sequence of positive integers such that for every k ∈ Z with
0 < k ≤ n,

‖qkx‖ <
1

qk
.

We shall show that there is another q ∈ N such that ‖qx‖ < 1/q which
is distinct from all of the terms of 〈qk〉nk=1.

Let

c =
n

min
k=1
‖qkx‖.

By the irrationality of x, we have c > 0. Let n = [1/c] + 1. Then
n ∈ N, so by Dirichlet’s theorem there is a q ∈ N such that

‖qx‖ < 1

n

Because 1/n = 1/([1/c] + 1) < 1/(1/c) = c it follows that q 6= qk for
every k ∈ Z with 0 < k ≤ n. And because q ≤ n, i.e. 1/n ≤ 1/q, it
follows that ‖qx‖ < 1/q. �
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Even Theorem 2 does not give the full picture. It was proven by
Hurwitz in 1891 that the smallest positive real number ε such that
every real number is ε id2

N-approximable is in fact 1/
√

5. However, we
shall omit this proof in this document, and move straight on to the
investigation of which real numbers are strongly approximable to the
order 2.

5. Badly approximable numbers

It is clear that there are real numbers which are strongly approx-
imable to the order 2, and in fact to any order. Indeed, suppose S ⊆ N
and let

x =
∑
k∈S

2−(k!),

so that for every k ∈ N, the digit at the (k!)th place after the radix
point of the binary expansion of x is 1 if k ∈ S and 0 if k 6∈ S, and
every digit at a place after the radix point of non-factorial index is 0.
For every n ∈ N, let

qn = 2n!,

pn = qn

n∑
k=1

2−(n!),

so that
qnn = (2n!)n = 2n·n! = 2(n+1)·n!−n! = 2(n+1)!−n!

and ∣∣∣∣x− p

q

∣∣∣∣ =

∣∣∣∣∣∑
k∈S

2−(k!) −
n∑
k=1

2−(k!)

∣∣∣∣∣ =
∑
k>n
k∈S

2−(k!)

≤
∞∑

k=n+1

2−(k!)

<
∞∑

k=(n+1)!

2−k = 2−((n+1)!−1)

≤ 2−((n+1)!−n!) =
1

qnn
.

Then for every τ ∈ R with τ > 0, if we let m = [τ ], then for every
integer n > m we have τ < n and therefore |x − pn/qn| < 1/qnn <
1/qτn. It follows that x is approximable to the order τ . Real numbers
like x, which are approximable to every order, are called Liouvillle
numbers. Note that the choice of S is arbitrary and determines x
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uniquely (because the binary expansion of x is certainly not recurring),
so there are in fact uncountably many Liouville numbers.

However, there are also real numbers that are not strongly approx-
imable to the order 2. These real numbers are called the badly approx-
imable numbers. We shall denote the set of the badly approximable
members of I by B. In order to prove the existence of badly approx-
imable numbers, we shall prove that every quadratic irrational number
is badly approximable. There are a number of different ways to do this,
but in this document we shall do it by proving a more general theo-
rem, first proven by Liouville in 1844, which says that for every integer
n > 1, no algebraic number of degree n is strongly approximable to the
order n.

Theorem 3 (Liouville, 1844). For every integer n > 1, no algebraic
member number of degree n is strongly approximable to the order n.

Proof. Suppose n ∈ Z, n > 1 and x is an algebraic number of degree
n. Then there is a finite sequence 〈ak〉nk=1 of integers such that an 6= 0
and

a0 + a1x+ · · ·+ anx
n = 0.

Let f be the function on R such that for every y ∈ R,

f(y) = a0 + a1y + · · ·+ any
n,

If x is the only root of f , let c = 1. Otherwise, let

c = min
y∈R
x 6=y
f(y)=0

|x− y|.

This minimum exists because f has at most n roots. It is also positive
by its definition. Note that f ′ is continuous and therefore bounded on
every bounded interval in R. In particular it is bounded on (x−c, x+c)
by some positive M ∈ R.

For every pair (p, q) of integers such that q > 0 and∣∣∣∣x− p

q

∣∣∣∣ < c,

the rational number p/q is closer to x than every root of f distinct
from x by the definition of c, but it is not equal to x because n > 1 and
therefore x 6∈ Q (the algebraic numbers of degree less than or equal to
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1 are the rational numbers). Therefore,

0 6= f

(
p

q

)
= a0 +

a1p

q
+ · · ·+ anp

n

qn

=
a0q

n + a1pq
n−1 + · · ·+ anp

n

qn
.

Given that p and q are integers, the numerator of the fraction at the
end of this chain of equations and inequalities is an integer, and given
that f(p/q) 6= 0 it is nonzero; therefore,

1

qn
≤
∣∣∣∣f (pq

)∣∣∣∣ =

∣∣∣∣−f (pq
)∣∣∣∣ =

∣∣∣∣0− f (pq
)∣∣∣∣ =

∣∣∣∣f(x)− f
(
p

q

)∣∣∣∣ .
Let

I =

{
[p/q, x] if p/q < x

[x, p/q] if p/q > x,

so that I is a closed interval on which f is differentiable, and which is
a subset of (x − c, x + c) (so that |f ′(y)| < M for every y ∈ I). Then
by the mean value theorem there is a y ∈ R strictly between p/q and
x such that

|f(x)− f(p/q)|
|x− p/q|

= |f ′(y)|,

i.e.

|f ′(y)|
∣∣∣∣x− p

q

∣∣∣∣ =

∣∣∣∣f(x)− f
(
p

q

)∣∣∣∣ ≥ 1

qn
.

It follows that ∣∣∣∣x− p

q

∣∣∣∣ ≥ 1

|f ′(y)|qn
>

1

Mqn
.

This is the case for every pair 〈p, q〉 of integers with q > 0, so x is not
strongly approximable to the order n. �

It is worth noting that Liouville’s theorem does not say that for every
n ∈ Z such that n > 1, n is the least τ ∈ R such that no algebraic
member of I of degree n is strongly approximable to the order τ . In
fact, that statement is true only in the case where n = 2. In 1955, K.
F. Roth proved [4] that no algebraic number of degree greater than 2
is strongly approximable to any order greater than 2. The same is of
course the case for algebraic numbers of degree exactly 2, but this was
already implied by Liouville’s theorem. Now, it follows from Roth’s
theorem that for every n ∈ Z such that n > 2, the least τ ∈ R such
that no algebraic member of I of degree n is strongly approximable
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to the order τ either does not exist, or is equal to 2. (It cannot be
less than 2 by Theorem 2 and the fact that for every τ ∈ R such that
α < 1, q−2 = o(q−τ ) as q approaches ∞.) Remarkably, it remains an
open question which of these two possibilities is the case. A proof of the
existence of just one badly approximable algebraic number of degree
greater than 2 would imply the former was the case, and a proof of
the nonexistence of any such number would imply the latter was the
case. Nobody has even been able to prove that any algebraic number
of degree greater than 2 is not badly approximable.

It is, however, easy enough to prove that there are badly approx-
imable numbers that are not quadratic, and to exhibit examples of
such numbers. In fact, most badly approximable numbers are not qua-
dratic, because B is uncountable but the set of the quadratic numbers
is countable. We shall prove the uncountability of B in the next section
by making use of a generalized Cantor set construction.

6. The cardinality of B

6.1. The Cantor set. The Cantor set K is the set of the members of
[0, 1] whose ternary expansions do not contain the digit 1. It can also
be expressed as

∞⋂
n=0

Kn,

where for every integer n ≥ 0, Kn is the set of the members of I whose
first n digits in base-3 positional notation after (and not including) the
unit digit are all distinct from 1. The sequence 〈Kn〉n∈Z,n≥0 can also be
defined by induction. In order to state this definition, let us introduce
some convenient notation.

Definition 1. For every b ∈ N, every integer n ≥ 0 and every k ∈ Z
such that 0 ≤ k < bn,

Ib,n,k =

[
k

bn
,
k + 1

bn

]
.

The common denotation of the expressions on both sides of the above
equation is said to be of base b, order n and index k.

Note that for every b ∈ N, we have:

(1) Ib,0,0 = [0, 1].
(2) For every integer n ≥ 0 and every k ∈ Z such that 0 ≤

k < bn, Ib,n,k is the finite union of the closed intervals Ib,n+1,kb,
Ib,n+1,kb+1, . . . and Ib,n+1,kb+(b−1), and no intersection of two of
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these intervals has more than one member. Also, the length of
Ib,n,k is 1/bn.

The definition by induction of 〈Kn〉n∈N is as follows.

(1) K0 = [0, 1].
(2) For every integer n ≥ 0,

Kn+1 =
⋃
k∈Z

0≤k<3n

In,k⊆Kn

In+1,3k ∪ In+1,3k+2.

In other words, Kn+1 is the result of partitioning every interval
in Kn of the form I3,n,k where 0 ≤ k < 3n into its three subinter-
vals of order n + 1, namely I3,n+1,3k, I3,n+1,3k+1 and I3,n+1,3k+2,
and removing the middle interval I3,n+1,3k+1.

It is easily seen that K is uncountable. Let f be the function on the
set of the non-cofinite subsets of N such that for every S ⊆ N,

f(S) =
∑
n∈S

2 · 3−n.

Then the expansion of f(S) in base-3 positional notation does not
contain the digit 1, so f(S) ∈ K. And because S is not cofinite, the
expansion contains the digit 0 at infinitely many places—it does not
end in a recurring sequence of unit digits. It follows that f is injective
and hence there are at least as many members of K as there are non-
cofinite subsets of N. There are uncountably many such subsets of N
because there are no more cofinite subsets of N than there are finite
subsets of N, and there are only countably many finite subsets of N.

In the next section, we generalize this construction in order to con-
struct a subset of B which can be easily shown to be uncountable, and
thereby prove the uncountability of B. There are lots of different ways
the construction of the Cantor set can be generalized, but what we want
to do, in particular, is to generalize the base of the intervals referred
to in the definition, and the choice of which intervals are removed.

6.2. Generalized Cantor sets. The following definition is adapted
from [1], although it is presented a little differently. The proof that
#B > ℵ0 on the next page is also adapted from the same source.

Definition 2. For every b ∈ N and every family F of intervals of base
b and positive order,

K(b,F) =
∞⋂
n=0

Kn(b,F)
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where:

(1) K0(b,F) = [0, 1].
(2) For every integer n ≥ 0,

Kn+1(b,F) =
⋃
k∈Z

0≤k<bn
Ib,n,k⊆Kn(b,F)

⋃
l∈Z

0≤l<b
Ib,n+1,kb+l∈F

Ib,n+1,kb+l

In other words, Kn+1(b,F) is the result of partitioning every
interval in Kn(b,F) of the form Ib,n,k, where 0 ≤ k < bn, into
its b subintervals of order n + 1, namely Ib,n+1,kb, Ib,n+1,kb+1,
. . . and Ib,n+1,kb+(b−1), and removing the subintervals that are
not members of F .

The common denotation of the expressions on both sides of the equa-
tion above is called the generalized Cantor set of base b and filter F .

Not every generalized Cantor set as defined by Definition 2 is un-
countable. For example, #K(b, ∅) = 0 for every b ∈ N. But we can
easily establish a criterion for uncountability. In informal terms, if, for
every integer n ≥ 0, at least two subintervals always remain unremoved
from every interval in Kn(b,F) during the construction of Kn+1(b,F),
and these two intervals are not adjacent to one another (so that they
are disjoint), then K(b,F) is uncountable.

Definition 3. For every b ∈ N and every family F of intervals of base
b and positive order, K(b,F) is said to be strictly branching if and only
if for every integer n ≥ 0 and every k ∈ Z such that 0 ≤ k < bn and
Ib,n,k ⊆ Kn(b,F), there is a pair 〈i, j〉 of integers such that 0 ≤ i+ 1 <
j < b and

Ib,n+1,kb+i ∈ F ,
Ib,n+1,kb+j ∈ F .

Theorem 4. For every b ∈ N and every family F of intervals of base
b and positive order such that K(b,F) is strictly branching,

(13) #K(b,F) > ℵ0.

Proof. Suppose b ∈ N, F is a family of intervals of base b and positive
order, K(b,F) is strictly branching and 〈xn〉n∈N is a sequence of real
numbers such that xm 6= xn for every pair (m,n) of positive integers.
We shall prove the existence of an x ∈ K(b,F) such that x 6= xn for
every n ∈ N, and thus prove that every countable subset of K(b,F) is
a proper subset of K(b,F).
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Let

I =
∞⋂
n=1

Ib,n,kn

where 〈kn〉n∈Z,n≥0 is a sequence defined inductively as follows.

(1) k0 = 0.
(2) For every integer n ≥ 0, if we assume as an inductive hypothe-

sis that 0 ≤ kn < bn and Ib,n,kn ⊆ Kn(b,F), then by the strict
branchingness of K(b,F) there is a pair 〈i, j〉 of integers such
that 0 ≤ i+ 1 < j < b and Ib,n+1,knb+i and Ib,n+1,knb+j are both
members of F . Given that Ib,n,kn ⊆ Kn(b,F), both Ib,n+1,knb+j

and Ib,n+1,knb+j are subsets of Kn+1(b,F). Given that i+ 1 < j,
the intersection Ib,n+1,knb+i ∩ Ib,n+1,knb+j is empty, and there-
fore xn+1 is not a member of both Ib,n+1,knb+i and Ib,n+1,knb+j.
Therefore, by letting kn+1 be knb+ i or knb+ j as appropriate,
we have xn+1 6∈ Ib,n,kn . We also have 0 ≤ kn+1 < bn+1 and
Ib,n+1,kn+1 ⊆ Kn+1(b,F), so the assumption of the inductive hy-
pothesis is valid. Moreover, Ib,n+1,kn+1 ⊆ Ib,n,kn and the length
of Ib,n,kn is b times the length of Ib,n+1,kn+1 .

It is easily seen that the length of Ib,n,kn approaches 0 as n approaches
∞, and because we also have that Ib,n+1,kn+1 ⊆ Ib,n,kn for every inte-
ger n ≥ 0, it follows by the Cantor intersection theorem that I is
a singleton. Let x be its unique member. Then x 6= xn for every
n ∈ N, because x ∈ Ib,n,kn and xn 6∈ Ib,n,kn , and x ∈ K(b,F), because
Ib,n,kn ⊆ Kn(b,F) for every integer n ≥ 0. �

6.3. Proof that B is uncountable. In order to prove that #B > ℵ0
we need to find a generalized Cantor set K′ = K(b,F) such that:

(1) K′ ⊆ B.
(2) K′ is strictly branching.

In order for (1) to hold the filter F must somehow remove every
member of I which is not badly approximable from the set at some
stage in the construction. A simple option would be to choose F to
be the set of the intervals of base b and positive order whose members
are all badly approximable. But it is easy to see from the construction
of the Liouville numbers described in the previous section that there
are Liouville numbers, which are of course not badly approximable, in
every open interval in R (and therefore in every closed interval in R
of positive length, including every interval of base b). So this choice of
F gives us that K(b,F) = ∅, and therefore (2) does not hold. A more
complicated choice of F is therefore necessary.
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In order to see how we should choose F , first, note that

F =
∞⋃
n=1

Fn,

where for every n ∈ N, Fn is the set of the intervals of order n that
are members of F . The task at hand is best thought of as the task of
choosing F “piece by piece”, i.e. choosing Fn for every n ∈ N, so that
the eventual infinite union F filters out every non-badly approximable
member of I.

Recall that an x ∈ R is badly approximable if and only if there is a
c ∈ R such that c > 0 and

(14)

∣∣∣∣x− p

q

∣∣∣∣ ≥ c

q2

for every pair 〈p, q〉 of integers with q > 0. Suppose that for every
n ∈ N, the members x of every interval in Fn satisfy (14) for some
pairs 〈p, q〉 of integers such that q > 0, but this is guaranteed only for
the pairs in a subset Qn of Z ×N, rather than the pairs in the whole
set Z×N. Suppose further that

(15)
∞⋃
n=1

Qn = Z×N.

For every x ∈ K(b,F), there is a sequence (In)n∈N such that for every
n ∈ N, In is an interval of base b and order n + 1, In ∈ Fn and In
contains x. (This can be easily seen from Definition 2.) Therefore, if
F is chosen as just described, (14) holds for every n ∈ N and every
〈p, q〉 ∈ Qn. Given (15), it follows that x is badly approximable (in
fact, we know a specific real number c > 0 for which it is not c id−2N -
approximable) and hence K(b,F) ⊆ B.

Now, we have not said anything about how c and 〈Qn〉n∈N are chosen.
Given (15), every pair (p, q) of integers with q > 0 is a member of Qn

for some n ∈ N. A natural way to choose 〈Qn〉n∈N so that this is the
case is to let f be a monotonic positive real-valued function on N such
that the range of f contains 1 and f(n+ 1)−f(n) > 1 for every n ∈ N
with f(n) ≥ 1, and to let

Qn = {〈p, q〉 ∈ Z×N : gcd(p, q) = 1 ∧ f(n) ≤ q < f(n+ 1)}

for every n ∈ N. This choice of 〈Qn〉n∈N has the additional convenient
properties that the sets Q1, Q2, Q3, . . . are pairwise disjoint, and Qn is
non-empty for every sufficiently large n ∈ N.
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If 〈Qn〉n∈N is chosen thus, then for every n ∈ N and every 〈p, q〉 ∈ Qn

as defined above, we have f(n)2 ≤ q2 and therefore for every x ∈ R,∣∣∣∣x− p

q

∣∣∣∣ ≥ c

f(n)2

implies (14). Therefore, for every k ∈ Z such that 0 ≤ k < bn, Ib,n,k
satisfies the necessary condition for inclusion in Fn described above
(that (14) holds for every x ∈ Ib,n,k and every 〈p, q〉 ∈ Qn) if every
member of Ib,n,k is at a distance of at least c/f(n)2 from every mem-
ber of Qn. Given that the necessary condition for membership in Fn
described above exists, the choice of Fn is arbitrary, so we may take
Fn to be the set of the intervals of order n whose members are all at
distances of at least c/f(n)2 from every member of Qn. So that we can
state this sufficient condition for inclusion is a slightly more concise
way, let

∆(n, p/q) =

(
p

q
− c

f(n)2
,
p

q
+

c

f(n)2

)
for every 〈p, q〉 ∈ Qn. We shall call the intervals of the form ∆(n, p/q),
where 〈p, q〉 ∈ Qn, the dangerous intervals of order n. Then we have
Ib,n,k ∈ Fn if and only if Ib,n,k is disjoint from every dangerous interval
of order n.

Now, for every 〈p, q〉 ∈ Qn, the dangerous interval ∆(n, p/q) has
length (2c)/(f(n)2), and for every k ∈ Z such that 0 ≤ k < bn, the
interval Ib,n,k has length 1/bn. Therefore, if

2c

f(n)2
≤ 1

bn
,

i.e.

(16) c ≤ f(n)2

2bn
,

then we can be assured that there are no more than two k ∈ Z such
that 0 ≤ k < bn and Ib,n,k∩∆(n, p/q) 6= ∅. It follows that if (16) holds,
then among any 5 or more intervals of the form Ib,n,k, where k ∈ Z and
0 ≤ k < bn, there are two which are disjoint from each other and from
∆(p, q). Note that in order for it to be possible to choose c and f so
that (16) holds for every n ∈ N, the asymptotic equation

1

f(n)2
= O

(
1

bn

)
(n→∞)

must hold. Clearly we can choose f so that it satisfies this asymptotic
equation; for example, if f(n) = bn/2 for every n ∈ N, then f satisfies
the equation, f is monotonic and real-valued, f(0) = 1, and f(n+ 1)−
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f(n) = bn/2(b − 1) ≥ 51/2(5 − 1) = 4
√

5 > 1 for every n ∈ N, given
that b ≥ 5 as we assumed above. For this particular choice of f , any
choice of c such that c ≤ 1/2 will give us (16) for every n ∈ N.

Choosing c and f so that (16) holds for every n ∈ N almost makes
property (2) to hold. Suppose n ∈ Z, n ≥ 0, k ∈ Z, 0 ≤ k < bn and
Ib,n,k ⊆ Kn(b,F). Property (2) requires that there be a pair 〈i, j〉 of
integers such that such that 0 ≤ i+ 1 < j < b and

Ib,n+1,kb+i ∈ Fn+1,

Ib,n+1,kb+j ∈ Fn+1.

Every dangerous interval ∆(n, p/q), where 〈p, q〉 ∈ Qn
2, which is dis-

joint from Ib,n,k is also disjoint from Ib,n+1,kb+l for every l ∈ Z such
that 0 ≤ l < b, because Ib,n+1,kb+l ⊆ Ib,n,k. So if it happens that there
is at most one dangerous interval ∆(n, p/q), where (p, q) ∈ Qn, such
that Ib,n,k ∩ ∆(n, p/q) 6= ∅, and we also have b ≥ 5, then by the rea-
soning in the previous paragraph there is a pair 〈i, j〉 of integers such
that 0 ≤ i + 1 < j < b and both Ib,n+1,kb+i and Ib,n+1,kb+j are disjoint
from ∆(n, p/q) as well as all the other dangerous intervals of order n.
Therefore, Ib,n+1,kb+i ∈ F and Ib,n+1,kb+j ∈ F . But without these ad-
ditional assumptions, property (2) does not follow. To complete the
proof, then, we must prove that c and f can be chosen so that for every
n ∈ N and every k ∈ Z such that 0 ≤ k < bn, there is indeed at most
one dangerous interval ∆(n, p/q) such that Ib,n,k ∩∆(n, p/q) 6= ∅.

Let’s first note that for every 〈p, q〉 ∈ Qn, we have q < f(n + 1).
From this we see that for every pair of distinct rational numbers of the
forms p/q and p′/q, where 〈p, q〉 ∈ Qn and 〈p′, q′〉 ∈ Qn,∣∣∣∣pq − p′

q′

∣∣∣∣ =

∣∣∣∣pq′ − p′qqq′

∣∣∣∣ =
|pq′ − p′q|

qq′
≥ 1

qq′
>

1

f(n+ 1)2
,

because the equations |pq′ − p′q| = 0, pq′ = p′q and p/q = p′/q′ are
equivalent, and pq′ and p′q are both integers. The distance between
the midpoints of every pair 〈∆(p/q),∆(p′/q′)〉 of distinct dangerous
intervals of order n is therefore greater than 1/f(n+ 1)2.

Because the length of every dangerous interval of order n is (2c)/(f(n)2),
it follows that for every x ∈ ∆(p/q) and every y ∈ ∆(p′/q′),

|x− y| ≥ 1

f(n+ 1)2
− 2c

f(n)2
=
f(n)2 − 2cf(n+ 1)2

(f(n)f(n+ 1))2
.

Therefore, every interval in R of length less than (f(n)2 − 2cf(n +
1)2)/(f(n)f(n + 1))2 has a non-empty intersection with at most one

2Technically we have not defined Qn in the case where n = 0, but there is no
problem with taking Qn to be empty in that case.
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dangerous interval of length n. The interval Ib,n,k has length 1/bn, so
the desired property exists if

1

bn
<
f(n)2 − 2cf(n+ 1)2

(f(n)f(n+ 1))2
,

i.e.

(17) c <
f(n)2(bn − f(n+ 1)2)

2bnf(n+ 1)2
=
f(n)2

2bn
· b

n − f(n+ 1)2

f(n+ 1)2

Given (16), this inequality is implied by (bn−f(n+1)2)/(f(n+1)2) > 1,
which is equivalent to

(18) f(n+ 1)2 <
bn

2
.

And f can indeed be chosen so that (18) holds for every n ∈ N. For
example, consider the function f on N such that for every n ∈ N,

f(n) = b(n−3)/2.

This choice of f is monotonic, positive real-valued, and we have f(3) =
1. For every integer n ≥ 3, f(n + 1) − f(n) = b(n−3)/2(b − 1) ≥
5(3−3)/2(5 − 1) = 4 > 1, given that b ≥ 4. And, for every n ∈ N, we
have

f(n+ 1)2 = (b(n−2)/2)2 = bn−2 =
bn

b2
≤ bn

25
<
bn

2
,

again given that b ≥ 5, so (18) holds. Moreover, this function satisfies
(16) for every n ∈ N, because

f(n)2

2bn
=

(b(n−3)/2)2

2bn
=
bn−3

2bn
=

1

2b3
≥ c,

if we choose c so that c ≤ 1/(2b3). This completes the proof that B is
uncountable.

The result is stated again below in a more concise form.

Theorem 5. Suppose b ∈ Z, b ≥ 5, c ∈ R and 0 < c ≤ 1/(2b3). For
every n ∈ N, let

Qn = {〈p, q〉 ∈ Z×N : gcd(p, q) = 1 ∧ b(n−3)/2 ≤ q < b(n−2)/2}.

For every 〈p, q〉 ∈ Qn, let

∆(n, p/q) =

(
p

q
− 1

2bn
,
p

q
+

1

2bn

)
.
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And, let Fn be the set of the intervals of the form Ib,n,k, where 0 ≤ k <
bn, that are disjoint from every interval of the form ∆(n, p/q), where
〈p, q〉 ∈ Qn. Then

K(b,F) ⊆ B,

where

F =
∞⋃
n=1

Fn.

In fact, no member of K(b,F) is c id−2N -approximable.

7. The Lebesgue measure of B

In the previous section we proved something about the size of B in
terms of cardinality. But there are other meanings which the word
“size” can have when applied to a set of real numbers. One of the most
important of these notions of “size” is Lebesgue measure. We shall
show that even though B is uncountable and thus large, it is small in
another sense, because its Lebesgue measure is 0, which is the smallest
Lebesgue measure possible.

7.1. Lebesgue measure. A thorough definition and description of the
properties of Lebesgue measure can be found in textbooks such as [5].
In this section, we note only the properties that we use to prove that
B is uncountable, and we do not prove these propositions.

For every Lebesgue measurable S ⊆ R, the Lebesgue measure of S
is denoted µ(S). The modifier “Lebesgue measurable” is necessary in
this statement because there are subsets of R which are not Lebesgue
measurable. The following basic properties exist.

(1) For every Lebesgue measurable S ⊆ R, µ(S) is either a non-
negative real number or ∞.

(2) For every pair of real numbers a and b such that a < b, the
measure of every interval in R whose endpoints are a and b is
b− a.

(3) For every x ∈ R, µ({x}) = 0 (because {x} = [x, x] and x−x =
0).

(4) For every countable family F of pairwise disjoint Lebesgue mea-
surable subsets of R, the union of F is Lebesgue measurable
and

µ

(⋃
S∈F

S

)
=
∑
S∈F

µ(S).
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(5) For every countable S ⊆ R, µ(S) = 0 (because S is the union
of the sets of the form {x}, where x ∈ S, and this union is
countable).

(6) For every Lebesgue measurable S ⊆ R, R \S is Lebesgue mea-
surable.

(7) For every pair of Lebesgue measurable sets S and T of real
numbers such that S ⊆ R, µ(S) ≤ µ(T ) and µ(T \S) = µ(T )−
µ(S) (because µ(T ) = µ(S ∪ (T \ S)) = µ(S) + µ(T \ S) and
µ(T \ S) ≥ 0).

(8) For every countable family F of Lebesgue measurable subsets of
R (which are not necessarily pairwise disjoint), the union and
intersection of F are Lebesgue measurable.

(9) For every Lebesgue measurable S ⊆ R and every a ∈ R, µ({x+
a : x ∈ S} = µ(S).

(10) For every countable family F of Lebesgue measurable subsets
of R (which are not necessarily pairwise disjoint),

µ

(⋃
S∈F

S

)
≤
∑
S∈F

µ(S).

There is also a more complex property that we need to describe. For
every Lebesgue measurable S ⊆ R, every x ∈ S and every r ∈ R such
that r > 0,

µ((x− r, x+ r) ∩ S
2r

is the ratio of the measure of the portion of S that overlaps (x−r, x−r)
to the measure of (x− r, x− r) (which is 2r). It can be thought of as
the proportionate measure of S in (x− r, x+ r). The limit

lim
r→0

µ((x− r, x+ r) ∩ S)

2r

is called the density of S at x. There is a theorem on the densities of
members of Lebesgue measurable sets known as the Lebesgue density
theorem, which we shall use in the next section. It is stated below with-
out proof, but its proof can be found in any measure theory textbook
such as [5].

Theorem 6. For every Lebesgue measurable S ⊆ R, the density of S
at x exists and is equal to 1 for almost every member x of S.

Note that the phrase “almost every member x of S” here refers to
every member of S except for the members of a particular subset of
S which has Lebesgue measure 0. This is standard terminology. For
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example, µ(Q) = 0, because Q is countable, and therefore we can say
that almost every real number is irrational.

7.2. Proof that the Lebesgue measure of B is 0. Recall that for
every positive real-valued function Ψ on N,

W (Ψ) = lim sup
q→∞

I ∩
(
p

q
−Ψ(q),

p

q
+ Ψ(q)

)
=
∞⋂
t=1

∞⋃
q=t

I ∩
(
p

q
−Ψ(q),

p

q
+ Ψ(q)

)
.

It is helpful to introduce some notation that allows us to express this
equation more concisely.

(1) For every q ∈ N, let

Aq(Ψ) = I ∩
q⋃
p=0

(
p

q
−Ψ(q),

p

q
+ Ψ(q)

)
.

Aq(Ψ) is the set of the x ∈ I such that ‖qx‖ < qΨ(q).
(2) For every t ∈ N, let

A∞t (Ψ) =
∞⋃
q=t

Aq(Ψ),

A∞t (Ψ) is the set of the x ∈ I such that ‖qx‖ < qΨ(q) for some
q ∈ Z with q ≥ t.

Using this notation, we have

W (Ψ) =
∞⋂
t=1

A∞t .

The following theorem, which appears in [2], relates the Lebesgue
measure of W (Ψ) to the Lebesgue measures of the sets of the form
W (cΨ), where c ∈ R and c > 0; more specifically, it says that all of
these Lebesgue measures are the same.

Theorem 7. For every positive real-valued function Ψ on N such that
Ψ(q)→ 0 as q →∞ and every c ∈ R such that c > 0,

(19) µ(W (cΨ)) = µ(W (Ψ)).

Proof. Suppose Ψ is a positive real-valued function on N, Ψ(q)→ 0 as
q → ∞, c ∈ R and c > 0. We may assume without loss of generality
that c ≤ 1, because if c ≥ 1, then 1/c ≤ 1 and we can take Ψ and c to
denote the entities originally denoted by cΨ and 1/c, respectively.
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Given that c ≤ 1, we have W (cΨ) ⊆ W (Ψ) by Proposition 3. There-
fore, (19) is equivalent to

(20) µ(W (Ψ) \W (cΨ)) = 0.

Note that

W (Ψ) \W (cΨ) = W (Ψ) \
∞⋂
t=1

A∞t (cΨ) =
∞⋃
t=1

W (Ψ) \ A∞t (cΨ)

and therefore (20) holds if and only if

µ(W (Ψ) \ A∞t (cΨ) = 0

for every t ∈ N.
Suppose to the contrary that there is a t ∈ N such that

µ(W (Ψ) \ A∞t (cΨ)) > 0,

and let S = W (Ψ) \ A∞t (cΨ), so that S is the set of the x ∈ R such
that |x−p/q| ≥ cΨ(q) for every pair 〈p, q〉 of integers with q ≥ t. Then
because µ(S) > 0, there is an x ∈ S at which the density of S is 1 by
Theorem 6. Therefore, for every ε ∈ R such that ε > 0, we have

ε >

∣∣∣∣µ(]x− r, x+ r[∩S)

2r
− 1

∣∣∣∣
=

∣∣∣∣µ((x− r, x+ r) ∩ S)− 2r|
2r

∣∣∣∣
=

2r − µ((x− r, x+ r) ∩ S)

2r
,

i.e.

(21) µ(]x− r, x+ r[∩S) > 2r(1− ε)
for every sufficiently small r ∈ R such that r > 0. Given that S =
W (Ψ) \ A∞t (cΨ), we have S ⊆ I \ A∞t (cΨ) and therefore (21) implies

2r(1− ε) < µ((x− r, x+ r) \ A∞t (cΨ)).

By rearranging this equation, we see that it is equivalent to

2rε > 2r − µ((x− r, x+ r) \ A∞t (cΨ))

= µ((x− r, x+ r) \ ((x− r, x+ r) \ A∞t (cΨ)))

= µ((x− r, x+ r) ∩ A∞t (Ψ))

and therefore we have

(22) µ((x− r, x+ r) ∩ A∞t (cΨ) < 2rε

for every sufficiently small r ∈ R with r > 0. Note that this is the case
for every ε ∈ R with ε > 0.
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Now, for every r ∈ R with r > 0, we have Ψ(q) < r/2 for every
sufficiently large q ∈ N because Ψ(q) → 0 as n → ∞. And, because
x ∈ S ⊆ W (Ψ), we have |x − p/q| < Ψ(q) for pairs 〈p, q〉 of integers
with q arbitrarily large. It follows that there are pairs 〈p, q〉 of integers
with q arbitrarily large such that∣∣∣∣x− p

q

∣∣∣∣ < Ψ(q) <
r

2

and in particular there is such a pair (p, q) with q ≥ t.
If r is small enough that (22) holds for every s ∈ R with 0 < s < r,

then if we let s = 2Ψ(q), we have

µ((x− s, x+ s) ∩ A∞t (cΨ) < 2sε = 4εΨ(q).

In the particular case where ε = c/4, this equation is equivalent to

µ((x− s, x+ s) ∩ A∞t (cΨ)) < cΨ(q).

But this results in a contradiction, because we also have that µ((x −
s, x + s) ∩ A∞t (cΨ)) ≥ cΨ(q) (in fact, it is greater than or equal to
2cΨ(q)), by the following reasoning. Let

I =

(
p

q
− cΨ(q),

p

q
+ cΨ(q)

)
.

The Lebesgue measure of I is 2cΨ(q). Given that q ≥ t, we have
I ⊆ A∞t (cΨ). And for every y ∈ I,

|y − x| ≤
∣∣∣∣x− p

q

∣∣∣∣+

∣∣∣∣y − p

q

∣∣∣∣ < Ψ(q) + cΨ(q) ≤ 2Ψ(q) = s,

from which it follows that y ∈ (x − s, x + s). Therefore, I is a subset
of (x− s, x+ s) as well as A∞t (cΨ). It follows that I is a subset of the
intersection (x− s, x+ s)∩A∞t (cΨ), and therefore µ(I) ≤ µ((x− s, x+
s) ∩ A∞t (cΨ)). �

Given Theorem 7, the proof that µ(B) = 0 is very straightforward.
First, note that for every positive real-valued function Ψ on N,

W ∗(Ψ) =
⋂
ε∈R
ε>0

W (εΨ) =
∞⋂
n=1

W (Ψ/n)
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because 1/n→ 0 as n→∞. Therefore,

µ(I \W ∗(Ψ)) = µ

(
I \

∞⋂
n=1

W (Ψ/n)

)

≤
∞∑
n=1

µ(I \W (Ψ/n))

=
∞∑
n=1

(µ(I)− µ(W (Ψ/n)))

=
∞∑
n=1

(1− µ(W (Ψ))).

It follows that if 1 − µ(W (Ψ)) = 0, i.e. µ(W (Ψ)) = 1, then we have
µ(I \W ∗(Ψ)) = 0, i.e. µ(W ∗(Ψ)) = 1. In the particular case where
Ψ = id−2N , we have

W (id−2N ) = I

by Theorem 2, from which it follows that µ(W (id−2N )) = 1. Therefore,

µ(B) = µ(I \W ∗(id−2N )) = 0.

If we use the terminology established in the previous section, what
this result means is that almost every real number is not badly ap-
proximable. Or, to put it another way, almost every real number is
strongly approximable to the order 2. Thus the result is “almost” a
strengthening of Dirichlet’s theorem.
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